Three-dimensional diffractive micro- and nano-optical elements fabricated by electron-beam lithography
نویسندگان
چکیده
The broad development of the microand nano-technologies in the past few years increased the need of techniques capable of fabricating sub-micron structures with arbitrary surface profiles. Out of the several fabrication approaches (HEBS lithography, laser writing, etc.) the electron beam writing stands out as the one capable of the highest resolution, superior alignment accuracy and very small surface roughness. These characteristics make the technique greatly applicable in the fields of photonics and micro-opto-electro-mechanical-systems (MOEMS). Here we describe the specificity of fabricating 3D diffractive microand nano-optical elements using Leica EBPG 5000+ electron beam system. Parameters like speed of writing, dose accumulation, pattern writing specifics, etc. affect greatly the electronbeam resist properties and the desired 3D profile. We present data that can be used to better understand the different dependencies and therefore achieve better profile and surface roughness management. The results can be useful in future developments in the areas of integrated photonic circuits and MOEMS.
منابع مشابه
Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography.
The effect of diffractive coupling on the collective plasmon line shape of linear arrays of Ag nanoparticles fabricated by electron beam lithography has been investigated using Rayleigh scattering spectroscopy. The array spectra exhibit an intricate multi-peak structure, including a narrow mode that gains strength for interparticle distances that are close to the single particle resonance wavel...
متن کاملEfficient beam shaping of linear, high-power diode lasers by use of micro-optics.
We have designed, fabricated, and characterized a micro-optical beam-shaping device that is intended to optimize the coupling of an incoherent, linearly extended high-power diode laser into a multimode fiber. The device uses two aligned diffractive optical elements (DOEs) in combination with conventional optics. With a first prototype, we achieved an overall efficiency of 28%. Straightforward i...
متن کاملFabrication and Performance of Diffractive Optics for Quantum Well Infrared Photodetectors
Diffractive optical elements (microlenses) for quantum well infrared photodetectors (QWIPs) were fabricated by two techniques: 1) standard lithography of a binary optical structure and 2) PMMA pattern transfer for an analog diffractive optic structure. The binary lenses were fabricated by sequential contact lithography and etching using two binary masks. The analog diffractive lenses were fabri...
متن کاملFive beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.
This paper demonstrates an approach for laser holographic patterning of three-dimensional photonic lattice structures using a single diffractive optical element. The diffractive optical element is fabricated by recording gratings in a photosensitive polymer using a two-beam interference method and has four diffraction gratings oriented with four-fold symmetry around a central opening. Four firs...
متن کاملFabrication of Binary Diffractive Lens on Optical Films by Electron Beam Lithography
Two types of lenses can focus light: an optical lens using refraction phenomenon and a diffractive lens using diffraction phenomena. Table 1 shows the characteristics of each lens. The focal length of the diffractive lens is controlled by the structures of the lens, as mentioned in detail in Section 2.2. This suggests that the focal length of the diffractive lens is independent of refractive in...
متن کامل